segunda-feira, 18 de agosto de 2008

PROGRESSÃO ARITIMÉTICA




PROGRESSÃO ARITIMÉTICA



DEFINÇÃO

Consideremos a seqüência ( 2, 4, 6, 8, 10, 12, 14, 16).
Observamos que, a partir do segundo termo, a diferença entre qualquer termo e seu antecessor é sempre a mesma:
4 – 2 = 6 – 4 = 10 – 8 = 14 – 12 = 16 – 14 = 2
Seqüências como esta são denominadas progressões aritméticas (PA).A diferença constante é chamada de razão da progressão e costuma ser representada por r. Na PA dada temos r = 2.
Podemos, então, dizer que:

Progressão aritmética é a sequência de números onde, a partir do primeiro termo,todos são obtidos somando uma constante chamada razão.



São exemplos de PA:

• • (5, 10, 15, 20, 25, 30) é uma PA de razão r = 5
• • (12, 9, 6, 3, 0, -3) é uma PA de razão r = -3
• • (2, 2, 2, 2, 2,...) é uma PA de razão r = 0

Notação

PA( a1, a2, a3, a4, ...., an)
Onde:
a1= primeiro termo
an = último termo, termo geral ou n-ésimo termo
n = número de termos( se for uma PA finita )
r = razão

Exemplo: PA (5, 9, 13, 17, 21, 25)
a1 = 5
an = a6 = 25
n = 6
r = 4


Classificação

QUANTO A RAZAO:

• • (5, 10, 15, 20, 25, 30) é uma PA de razão r = 5.
Toda PA de razão positiva ( r > 0 ) é crescente

• • (12, 9, 6, 3, 0, -3) é uma PA de razão r = -3
Toda PA de razão negativa é decrescente.

• • (2, 2, 2, 2, 2,...) é uma PA de razão r = 0
Toda PA de razão nula ( r = 0 ) é constante ou estacionária.


QUANTO AO NÚMERO DE TERMOS:

• • (5, 15, 25, 35, 45, 55) é uma PA de 6 termos e razão r = 10.
Toda PA de n° de termos finito é limitada.

• • (12, 10, 8, 6, 4, 2,...) é uma PA de infinitos termos e razão r = -2
Toda PA de n° de termos infinito é ilimitada.



PROPRIEDADES

P1:Três termos consecutivos

Numa PA, qualquer termo,a partir do segundo, é a média aritmética do seu antecessor e do seu sucessor.

Exemplo:

Consideremos a PA(4, 8, 12, 16, 20, 24, 28) e escolhamos três termos consecutivos quaisquer: 4, 8, 12 ou 8, 12, 16 ou ... 20, 24, 28.
Observemos que o termo médio é sempre a média aritmética dos outros dois termos:

4 + 12/ 2 = 8
8 + 16 / 2 = 12
20 + 28 / 2 = 24


P2: Termo Médio

Numa PA de números impares nos dois extremos, o termo do meio (médio)é a média artmética do primeiro termos e do ultimo


Exemplo:
Consideremos a PA(3, 6, 9, 12, 15, 18, 21) e o termo médio é 12.
Observemos que o termo médio é sempre a média aritmética do primeiro e do último.

3 + 21 / 2 = 12


P3: Termos Eqüidistantes

A soma de dois termos equidistantes dos extremos de uma PA finita é igual à soma dos extremos


Exemplo:
Consideremos a PA(3, 7, 11, 15, 19, 23, 27, 31).

7 e 3
11 e 23 são os termos eqüidistantes dos extremos 3 e 31
15 e 19




Termo Geral

Aplicando a definição de PA, podemos escrevê-la de uma outra forma:

PA( a1, a2, a3, a4, ...., an-1 ,an)


PA( a1, a1+ r, a1+ 2r, a1+ 3r, a1+ 4r, ..., a1+ (n-1)r )

Portanto, o termo geral será:

an= a1+(n-1)r



Exercícios Resolvidos

1. 1. Determine o quarto termo da PA(3, 9, 15,...).

Resolução:
a1=3
a2=9
r = a2 - a1 = 9 – 3 = 6
(a1, a2, a3, a4,... )


Então:
a4 = a1 + r + r + r
a4 = a1 + 3r
a4 = 3 + 3.6
a4 = 3+18
a4 = 21

com a formula do termo geral:

an = a1 + (n - 1 ) r
a4= 3 + (4 - 1) 6
a4 = 3 + 3.6
a4 = 9 + 18
a4 = 21

2. 2. Determine o oitavo termo da PA na qual a3 = 8 e r = -3.

Resolução:
a3 = 8
r = -3
(a1, ...,a3, a4, a5, a6, a7, a8,... )



Então:
a8 = a3 + r + r + r + r + r
a8 = a3 + 5r
a8 = 8 + 5.-3
a8 = 8 - 15
a8 = - 7

com a formula do termo geral :

an = a1 + (n -1)r
a8 = 15 + ( 8 -1) . (-3) --como a razão é negativa a PA é decrescente sendo a1 = 15
a8 = 15 + (-21)
a8 = -7


3. 3. Interpole 3 meios aritméticos entre 2 e 18.
Resolução:
Devemos formar a PA(2, ___, ___, ___, 18), em que:
a1 = 2
an = a5 = 18
n = 2 + 3 = 5
Para interpolarmos os três termos devemos determinar primeiramente a razão da PA. Então:
a5 = a1 + r + r + r + r
a5 = a1 + 4r
18 = 2 + 4r
16 = 4r
r = 16/4
r = 4
Logo temos a PA(2, 6, 10, 14, 18)

Soma dos Termos de uma PA finita


Consideremos a seqüência ( 2, 4, 6, 8, 10, 12, 14, 16, 18, 20).
Trata-se de uma PA de razão 2. Suponhamos que se queira calcular a soma dos termos dessa seqüência, isto é, a soma dos 10 termos da PA(2, 4, 6, 8, ..., 18,20).
Poderíamos obter esta soma manualmente, ou seja, 2+4+6+8+10+12+14+16+18+20 =110. Mas se tivéssemos de somar 100, 200, 500 ou 1000 termos? Manualmente seria muito demorado. Por isso precisamos de um modo mais prático para somarmos os termos de uma PA. Na PA( 2, 4, 6, 8, 10, 12, 14, 16, 18, 20) observe:


a1+a10 = 2 + 20 = 22
a2+a9 = 4 + 18 = 22
a3+a8 = 6 + 16 = 22
a4+a7 =8 + 14 = 22
a5+a6 = 10 + 12 = 22

Note, que a soma dos termos eqüidistantes é constante ( sempre 22 ) e apareceu exatamente 5 vezes (metade do número de termos da PA, porque somamos os termos dois a dois). Logo devemos ao invés de somarmos termo a termo, fazermos apenas 5 x 22 = 110, e assim, determinamos S10 = 110 ( soma dos 10 termos ).
E agora se fosse uma progressão de 100 termos como a PA(1, 2, 3, 4,...,100), Como faríamos?
Procederemos do mesmo modo. A soma do a1 com a100 vale 101 e esta soma vai se repetir 50 vezes(metade de 100), portanto S100 = 101x50 = 5050.

Então para calcular a soma dos n termos de uma PA somamos o primeiro com o último termo e esta soma irá se repetir n/2 vezes. Assim podemos escrever:

sn=(a1 + an)n/2



Exercícios Resolvidos

1. 1. Calcule a soma dos 50 primeiros termos da PA(2, 6, 10,...).
Resolução:
a1 = 2
r = a2 – a1 = 6 – 2 = 4
Para podemos achar a soma devemos determinar o an(ou seja, a50):
a50 = a1 + 49r = 2 + 49.4 = 2 + 196 = 198

Aplicando a fórmula temos:
S50 = (a1+an).n/2 = (2+198).50/2 = 200.25=5000

2. 2. Um ciclista percorre 20 km na primeira hora, 17 km na segunda hora, e assim por diante, em progressão aritmética. Quantos quilômetros percorrerá em 5 horas?

Resolução:
PA = (20, 17,14,...)
a1 = 20
r = a2 – a1 = 17 - 20 = -3

Para podemos achar quantos quilômetros ele percorrerá em 5 horas devemos somas os 5 primeiros termos da PA e para isto precisamos do an (ou seja, a5):
a5 = a1 + 4r = 20 + 4.-3 = 20 - 12 = 8

Aplicando a fórmula temos:
S5 = (a1+an).n/2 = (20+8).5/2 = 14.5 = 70
Logo ele percorreu em 5 horas 70 km.

EXERCICIOS

1) Qual é o décimo quinto termo da PA (4, 10......)? (R:88)

2) Qual é o centésimo número natural par? (R:198)

3) Ache o sexagésimo número natural ímpar (R:119)

4) Numa PA de razão 5 o primeiro termo é 4. Qual é a posição do termo igual a 44? (R:9ª)

5) Calcule o numero de termos da PA(5,10.....785) (R:157)

6) Ache a soma dos quarenta primeiros termos da PA(8, 2....) (R:-4360)

7) Numa progressão aritmética, a19=70 e a razão é 7 determine:
---a)O primeiro termo (R:-56)
---b)O décimo termo (R:7)
---c)A soma dos 20 primeiros termos (R:210)

8) O vigésimo termo da Progressão Aritmética , 3, 8, 13, 18 .é
obs: dados an= a1 + (n - 1)r
a) 63
b) 74
c) 87
d) 98 (X)
e) 104

9)Se x, x + 5, -6 são termos consecutivos de uma progressão aritmética (PA) então o valor de x é
a) -16 (X)
b) -14
c) -18
d) -12
e) -20

10) Achar o 14º termo da PA (3,10,17,.....)(R:94)

11) Escrever os três primeiros termos de uma PA de razão 2, sabendo que a32 =79 (R:17,19,21)

12)Determine a localização do número 22 na PA (82,76,70,....) (R:11)

13) Os termos consecutivos de uma progressão aritmética (PA) são x; 10; 12. Podemos concluir que x vale
a) 3
b) 4
c) 5
d) 6
e) 8 (X)

12 Comentários:

Às 27 de outubro de 2009 às 19:07 , Blogger lessa disse...

quero saber a formula de como resolver o numero de termos de uma p.a.

 
Às 3 de dezembro de 2009 às 04:51 , Blogger Unknown disse...

vlw, me ajudou muito
xP

 
Às 8 de novembro de 2010 às 11:23 , Blogger Unknown disse...

OTIMO!!!! MAS PODERIA TER COMO NOS FALAR O Q NOS QUEREMOS SABER E VCS RESPONDEREM MAIS VALEU BJOSSSSSSS

 
Às 23 de novembro de 2011 às 04:59 , Blogger Samantha disse...

Massa muito bom me ajudou muito para a prova de amanhã. obrigada..
valew....

 
Às 23 de fevereiro de 2012 às 12:32 , Blogger marcela_amara88 disse...

professor resolve essa pra mim.
Encontre a soma dos 22 termos termos de uma P.A em que a1 e =7 e a22=70 .
Vou aguadar vc resolver essa .xau xau

 
Às 4 de março de 2012 às 17:47 , Blogger ainda naum sei disse...

Oi, sou professora de mat, e acho q encontrei um erro, pois na questão 2.2 na primeira resolução deu -7 e qndo foi aplicada a fórmula do termo geral era para dar -6... q é a correta para mim! Tô viajando? me explica se eu estiver errada. Obrigada mesmo pelos exercícios!

 
Às 21 de março de 2012 às 12:29 , Anonymous Anônimo disse...

nosa muito obrigadoo valeu me ajudou muitoo. gostei muito da forma de explicar bem clara e direta. valeu ^^

 
Às 4 de agosto de 2012 às 10:30 , Blogger Patrícia disse...

Muito obrigada por postar!

 
Às 8 de novembro de 2012 às 13:26 , Blogger iyes disse...

man foi mal mais seu exercicio tem 3 erros o da primeira questao é que vc nao colocou o valos do pa tangente

o da segunda foi que vc nao falou os termos singulares e o da terceira foi que vc nao mostrou o ciclo que a questao pedia

e tb e acho q encontrei um erro, pois na questão 2.2 na primeira resolução deu -7 e qndo foi aplicada a fórmula do termo geral era para dar -6... q é a correta para mim! Tô viajando? me explica se eu estiver errada. Obrigada mesmo pelos exercícios!

 
Às 20 de setembro de 2013 às 06:29 , Anonymous Anônimo disse...

Me ajudou muito, conseguir resolver os exercicios um blog util. Obrigada.

 
Às 13 de novembro de 2015 às 08:27 , Blogger Unknown disse...

Me respondam " calcule o ultimo termo de uma p.a com 251 termos, sendo o 1° termo no valor de 10 e o 2° termo no valor de 15" ????

 
Às 1 de maio de 2017 às 06:26 , Anonymous Anônimo disse...

Qual o valor de a2 e as

 

Postar um comentário

Assinar Postar comentários [Atom]

<< Página inicial